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Abstract. We analyse the role ofGL2, a quantum group constructed by Dipper and Donkin (1991
Proc. London Math. Soc.63 165–211), as a global symmetry for quantum chains, and show how
to construct all possible Hamiltonians for four-state quantum chains withGL2 global symmetry.
In doing this, we search for and present all inner actions ofGL2 on the Clifford algebraC(1, 3).
We also introduce the corresponding operator algebras, invariants and Hamiltonians, explicitly.

1. Introduction

In the last few years, quasi-triangular Hopf algebras or quantum groups have attracted a lot of
attention from physicists. One of the most interesting features is that such structures can be
related to underlying symmetries on spaces where the coordinates are noncommutative. When
promoting these coordinates to functions, it has been shown that it is possible to write down
an action for such fields that, when added to the action of a commuting field, has a symmetry
resembling supersymmetry. Quantum groups can help us to understand the transformations
on such fields and the action invariances.

Symmetry has always played an important role in theoretical physics in helping to reduce
a problem with many variables to a more tractable size. The basis of the method built on
the Bethe ansatz is to diagonalize the Hamiltonian along with an infinite set of constants of
motion. In some cases the ocurrence of this infinite set of constants of motion is related to
the appearance of a new kind of symmetry, the quantum-group symmetry. This nourishes the
hope that, by relaxing the demands usually made on the structure of a symmetry group, and
allowing a wider class of quantum groups, one can benefit from symmetry considerations in
new situations, where a symmetry in the traditional sense is simply not present.

We model physical systems where the variables at the lattice sites take values so that the
operators acting on them are matrices of dimension 4× 4 and complex entries.

For some subclass of conformal integrable systems (well known examples are given by
minimal models, Wess–Zumino–Witten (WZW) models and the Liouville–Toda theory) the
underlying symmetries are indeed known to be given by quantum groups. However, in spite of
extensive studies, our understanding of the quantum-group symmetry in these theories is still
somewhat incomplete. We also think that there are realizations of quantum-group symmetry
in nature.

The adjoint inner actions studied here are also called spectrum-generating quantum groups.
So, we are classifying all possible roles ofGL2 as a spectrum-generating algebra forC(1, 3).
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7018 S Rodŕıguez-Romo

These inner actions have been used as a gauge transformationH → B in quantum-group
gauge theory. HereB is the space–time algebra andH the coordinate ring of the gauge group.

QuantumGLn are unique because they are related withq-Schur algebras [2], hence
Hecke algebras and the representation theory of finite general linear groups. In fact, the
representations of quantumGLn provide the connection between the classical theory of
polynomial representations of infinite general linear groups and the representation theory of
finite general linear groups in the non-describing characteristic case; obviously if we takeq to
be one, we are in the classical case. In this limit the representation theory of Dipper–Donkin
quantum groups is equivalent to the representation theory ofq-Schur algebras. From this
follows that the importance of this paper is to gain an understanding of theq-Schur algebra as
a global symmetry for quantum chains. We remark that the Dipper–Donkin quantum groups
are not special cases of the well known Manin’s construction. There is one fundamental
difference:the Dipper–Donkin quantum determinant is, in general, not central.

Weyl and Clifford algebras are at the heart of quantum physics. The most useful of them
are those endowed with definite transformation properties under the action of some symmetry
group. The idea that quantum groups could generalize Lie groups in describing symmetries
of quantum physical systems has attracted much interest in the past decade.

In this paper we study the inner action of the Dipper–Donkin quantum group on theC(1, 3)
algebra, namely the algebra generated by the Dirac matrices, as a testing ground for applications
of quantum-group symmetries. We search for the corresponding operator and invariant algebras
in order to have additional information to propose Hamiltonians for quantum chains with this
global symmetry. Interpreting the quantum group as a gauge group, one would consider
only the invariant elements as observables. The rest of the algebra would then be an algebra
of unobservable fields, whose function in the theory is to describe operations changing the
superselection sector (creating charge). We are also interested in some fundamental questions.
Can a quantum chain have global symmetry given by a quantum group with no central but
group-like determinant? What would be the meaning of this?

We address here the first question and study (as a particular case) four-state quantum chains.
We are able to show all possible, nontrivial Hamiltonians for this system, with Dipper–Donkin
global symmetry.

Having discovered all the Hamiltonians which are invariant under the Dipper–Donkin
quantum group for four-state quantum chains, we think of these as systems whose energy
eigenstates organize intoGL2 multiplets, with no energy splitting among members of the
same multiplet. This is done in spite of the fact that theGL2 determinant is group-like as it
should be, but not central to the algebra, as is the case.

2. Dipper–Donkin algebra

The algebraic structure of Dipper–Donkin quantizationGL2 [1] is generated by four elements
cij , 16 i, j 6 2 with relations which are presented in figure 1.

Here we denote by arrowsx → y the ‘quantum spinors’ (or generators of the quantum

Figure 1. Diagramatic representation of the Dipper–Donkin algebra: 1.
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plane [3])xy = qyx. By the straight linex − y we denote the ‘classical spinors’xy = yx
and by dotsx . . . y a classical spinor with a nontrivialperturbation[4], xy − yx = p being
p = (q − 1)c12c21.

In this algebra the quantum determinantd = c11c22− c12c21 is noncentral and group-like.
This is in contrast to Manin’s approach [3]. A group-like elementd, in a Hopf algebra, is such
that1d = d ⊗ d andε(d) = 1. In any Hopf algebra every group-like element is invertible,
therefore the quantumGL2 includes the formal inversed−1.

The coalgebra structure is defined in the standard way for all quantizations and the antipode
S is given in [1].

As we already know, the Clifford algebraC(1, 3) is generated by the vectorsγµ,
µ = 0, 1, 2, 3 with relations defined by the formgµν = diag(1,−1,−1,−1), as follows:

γµγν = gµν + γµν γµν = −γνµ
γργµν = gρµγν − gρνγµ + γρµν
γλγµνρ = gλµγνρ − gλνγµρ + gλργµν + γλµνρ.

This algebra is isomorphic to the algebra of the 4× 4 complex matrix and it includes the basis
of matrix units reported in [5]:eij , 16 i, j 6 4, among others.

An action ofGL2 onC(1, 3) is uniquely defined by the actions ofcij on the generators
of C(1, 3) [6,7];

cij · γk = fijk(γ0, γ1, γ2, γ3) (1)

wherefijk are some noncommutative polynomials in four variables.

For every action· there exists an invertible matrixM =
(
m11 m12

m21 m22

)
∈ C(1, 3)2×2, such

that

cij · v =
∑

mikvm
∗
kj

where

(
m∗11 m∗12
m∗11 m∗12

)
= M−1 (see the Skolem–Noether theorem for Hopf algebras [8,9]). The

action · is called inner if the mapcij → mij defines an algebra homorphismϕ : GL2 →
C(1, 3). Since the algebraC(1, 3) is isomorphic to the algebra of 4× 4 matrices, the
homorphismC(1, 3) defines (and is defined by) a four-dimensional module over (the algebraic
structure of)GL2, or, equivalently, a four-dimensional representation ofGL2.

If ϕ(c12c21) = 0, then by definition in figure 1 the representationϕ is given for an
essentially simpler structure, generated by two commuting ‘quantum spinors’(c21, c11) and
(c22, c12). In the case whenϕ(c12c21) 6= 0 we say that the inner action defined byϕ has nonzero
perturbation.

If we add the formal inversec−1
11 , then the algebraic structure of Dipper–Donkin

quantizationGL2 is generated by the elements in figure 2.
From here, it follows straightforwardly that, up to invertibility ofc11, the algebraic structure

of GL2 can be considered as a tensor productℵ ⊗ ℵ whereℵ is the quantum plane.
We say that the representation of theq-spinorxy = qyx, x → A, y → B is admissible

if there existsC such thatx → C, y → B andx → C, y → A are also representations

Figure 2. Diagramatic representation of Dipper–Donkin
algebra: 2.
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Figure 3. Diagramatic representation ofGLq(2, C).

of q-spinor withCB 6= 0. In other words, it means thatd → A, c12 → B, c21 → C is a
representation of the subalgebra ofGL2, generated byd, c12, c21 with CB 6= 0.

Following the method already developed for studying the actions ofGLq(2, C) on the
Clifford algebraC(1, 3) [5] we can construct all inner actions of the Dipper–Donkin quantiza-
tion on this Clifford algebra, providedqm 6= 1. We can also can provide with the corresponding
operator algebra< (namely the image of the representation), the algebra of invariantsI which
is equal to the centralizer of< in C(1, 3), and the perturbation of the representation [4]. We
definecij → Cij to be a finite-dimensional representation of the quantumGL2.

Here, we summarize the method used in [4, 5] to find and classify all possible inner
actions ofGLq(2, C) andGL2 onC(1, 3). The Hopf algebraGLq(2, C) is made out ofq-
spinors, classical spinors and kinds of perturbed spinors. The first and second types of spinors
are defined as shown in this paper. For the perturbed spinors: inGLq(2, C), we consider
p = (q − q−1)a12a21; meanwhilep = (q − 1)c12c21 for GL2. Actually, GLq(2, C) can
be presented as in figure 3: beinga11, a12, a21, a22, d−1 generators of the algebra. Here
d = a11a22− qa12a21. By arrows we again denoteq-spinors, by the straight line commuting
elements (classical spinors) and by dots, perturbed spinors.

For any Hopf algebra that can be presented in terms of combinations ofq-spinors, classical
spinors and perturbed spinors (whatever the definition of perturbed spinors is), we can use our
method to find and fully classify all inner actions on any given algebra. So far we have used
C(1, 3) as a particular example on whichGLq(2, C) andGL2 are acting but we want to stress
that our method allows us to use any other algebra. We chooseC(1, 3) since we want to have
a realization isomorphic to the algebra of 4× 4 complex matrices, having in mind further
applications in quantum field theory. Moreover, in this paper some results are given in terms
of matrix units.

First, we study all possibleq-spinor representations onC(1, 3) such thatq3, q4 6= 1
and analyse the equivalence of representations. Then, we simplify the algebraic structure of
GLq(2, C)by defining an auxiliary algebra. From this, we find the representation ofSLq(2, C)
(providedqm 6= 1) andconnectedGLq(2, C) [5].

Our classification scheme uses thisconnectionand follows straightforwardly [5]. The
operator algebras, the quantum determinants and the invariants of the corresponding inner
actions can also be presented. Two of these given representations are equivalent if and only if
they are equal to each other. Form this, we learn that, forGLq(2, C), the quantum determinants
are the only quantum invariants.

The Dipper–Donkin algebraGL2 is also generated byq-spinors, classical spinors and a
perturbated spinor, likeGLq(2, C). Our method can be applied with some extra conditions
coming from the particular structure ofGL2 [4]. Following the steps reported above we find,
for GL2, that the corresponding algebra of invariants equals the centralizer of coefficients of
M. By definition, the centralizer commutes with all elements of the algebra, thereby defining
Hamiltonians with conserved energy.

Whenever the algebra of invariants is in the field (complex for our case) the Hamiltonian
obtained is trivial. Besides, if and only ifI ∈ < the corresponding Hamiltonian can be defined,
since this can be writen in terms of the generators forGL2. In any other case the invariant
algebra cannot be used to construct Hamiltonians of a quantum chain.
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3. Quantum chains with global Dipper–Donkin symmetry

In this section we learn about global quantum-group symmetry. Although this does not lead
straightforwardly to integrability, we hope to be able to provide some additional information
related to this subject.

A method to construct quantum chains with symmetry associated to the algebra of
functions on a particular quantum group has been recently used, forq as a root of unity [10].

In this section we address the role of the Dipper–Donkin quantum group as a global
symmetry and show that, contrary to general belief (see e.g. [10]), the mixing of the generators
in the coproduct of the corresponding coalgebra of a quantum group is not a sufficient condition
to construct a nontrivial Hamiltonian for quantum chains. See, for instance, the constructions
shown in [11–14].

A quantum chain with global quantum-group symmetry can be defined as follows [10,11]:
to each sitej = 1, . . . , L of the chain, we assign a representationπj . We write the Hamiltonian

H =
L−1∑
j=1

id ⊗ · · · ⊗ id ⊗Hj ⊗ id ⊗ · · · ⊗ id

whereHj acts on sitesj andj + 1 as

Hj = (πj ⊗ πj+1)[Qj(1(C))].

Herej denotes the site of the lattice,C is a central element of the algebra, byπj we mean a
representation for the algebra andQj is a polynomial function.

First, let us study whenq is a root of unity. In this case, this polynomial function can be
taken of degreed 6 p where the integerp is characterized by the value ofq (qp = 1) as is
done in [10,11].

If q is a root of unity (qp = 1), all the elementscpij are central. In this case, one can uniquely
define a state|0〉 which is a common eigenvector ofc22 andc21 with eigenvaluesα andαβ (α
andβ being arbitrary constants), respectively. Then we build the spaceV as the linear span
of the vectors|n〉 = cn12|0〉, 06 n 6 p − 1. We can show thatV is an invariant vector space
under the action of the Dipper–Donkin quantum group. Thus, we constructπj as follows:

c12|n〉 = |n + 1〉 for n < p − 1 c22|n〉 = α|n〉
c11|n〉 = β|n + 1〉 for n < p − 1 c12|p − 1〉 = η|0〉
c21|n〉 = qnαβ|n〉 c11|p − 1〉 = βη|0〉.

(2)

Hereη is the central value ofcp12. All the parameters are independent.
We would like to remark that, in spite of the mixing of the generators in the coproduct for

the Dipper–Donkin algebra which has the same structure as the coproduct defined forGLq(n),
the Dipper–Donkin algebra leads only to trivial Hamiltonians (proportional to the identity).
This is true even for two-state quantum chains for which it is known that aGLq(2) global
symmetry can be implemented [10].

Now, let us study the caseqm 6= 1. We introduce here an alternative way to build up
Hamiltonians with Dipper–Donkin quantum global symmetry. Since for any Dipper–Donkin
quantum group the quantum determinant is group-like but not central and the invariantsI are
central, we can define a Hamiltonian as follows:

Hj = (πj ⊗ πj+1)[Qj(1(I)].

Our method works only forqm 6= 1. HereQj is any polynomial function.
We propose, as a particular case, to study the Dipper–Donkin algebra like a global

symmetry of four-state quantum chains. This is done by searching all possible finite-
dimensional representations of the Dipper–Donkin group on the algebra of 4× 4 complex



7022 S Rodŕıguez-Romo

matrices on which a well-defined coproduct for the algebra of invariants can be applied. Here
πj is one of these representations.

In table 1 we give the full set of all possible inner actions that, being nontrivial, are in the
operator algebra<; thereby properly defining1(I) and a corresponding Hamiltonian. Each
particular case provides a Hamiltonian with quantum Dipper–Donkin global symmetry for a
four-state quantum chain. An important result of this paper is that for all the cases reported in
table 1the Hamiltonians for four-state quantum chains with Dipper–Donkin global symmetry
have the unique formHj = (πj⊗πj+1)[Qj(1(Ajd+BjC11+CjC22)] whereAj ,Bj andCj are
constants also given in table 1. This, together with the representation of theGL2 generators,
straightforwardly leads to a Hamiltonian writen in matrix units, Dirac gamma matrices or
‘mass’ (m± = (1± γ0)/2) and ‘spin’ (s↑/↓ = (1± iγ12)/2) operators.

Let us now introduce some concrete examples for each case (namely particular forms
of the quantum determinant). To reach this goal we obtain at first(πj ⊗ πj+1)[Qj(1(C11)].
Explicitly,

(πj ⊗ πj+1)[Qj(1(C11⊗ C11) +Qj(1(C12⊗ C21)] = πj [Qj(C11] ⊗ πj+1[Qj(C11]

+πj [Qj(C12] ⊗ πj+1[Qj(C21].

We consider the simplest case and takeQj to be linear.
In a similar way we get(πj ⊗ πj+1)[Qj(1(C22)]. Explicitly

(πj ⊗ πj+1)[Qj(1(C21⊗ C12) +Qj(1(C22⊗ C22)] = πj [Qj(C21] ⊗ πj+1[Qj(C12]

+πj [Qj(C22] ⊗ πj+1[Qj(C22].

Again, we consider the simplest case and takeQj to be linear. At last, we obtain
(πj ⊗ πj+1)[Qj(1(d)]. Explicitly,

(πj ⊗ πj+1)[Qj(1(d ⊗ d)] = πj [Qj(C11C22)] ⊗ πj+1[Qj(C11C22)] − πj [Qj(C11C22)]

⊗πj+1[Qj(C12C21)] − πj [Qj(C12C21)] ⊗ πj+1[Qj(C11C22)]

+πj [Qj(C12C21)] ⊗ πj+1[Qj(C12C21)].

As usual, we considerQj to be linear.
We are now ready to present concrete examples.

Case 2.2.

Hj = (m+s↑ + αjm+s↓ + βjm−s↑ + γjm−s↓)⊗ (m+s↑ + αj+1m+s↓ + βj+1m−s↑ + γj+1m−s↓).

Case 3.5.

Hj = (q2/αjm+s↑ + q2/αjm+s↓ +m−s↑ +m−s↓ − q2/α2
jm+(γ1 + iγ2)γ3/2)

⊗(q2/αj+1m+s↑ + q2/αj+1m+s↓ +m−s↑ +m−s↓−q2/α2
j+1m+(γ1 + iγ2)γ3/2).

Case 4.4.

Hj = Aj(αjm+s↑ + q2m+s↓ + qm−s↑ +m−s↓)⊗ (αj+1m+s↑ + q2m+s↓ + qm−s↑ +m−s↓)
+Bj(δjm+s↑ + qm+s↓ + qm−s↑ +m−s↓)
⊗(δj+1m+s↑ + qm+s↓ + qm−s↑ +m−s↓)− Bjγjβj+1m+(γ1− iγ2)/2

⊗m−(−γ1 + iγ2)γ3/2 +Cj(αj/δjm+s↑ + qm+s↓ +m−s↑ +m−s↓)
⊗(αj+1/δj+1m+s↑ + qm+s↓ + qm−s↑ +m−s↓)
−Cjγj+1βjm−(−γ1 + iγ2)γ3/2⊗m+(γ1− iγ2)/2.
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Table 1. GL2 representations, corresponding operator algebras<, algebra of invariants which
are used to define nontrivial Hamiltonians for four-state quantum chains and the coefficients in
the unique expression for these Hamiltonians are presented. The classification used is given by
means of the different determinants inGL2. (a) Case 1: d = diag(q2, q,1, 1). (b) Case 2:
d = diag(q2, q, q,1). (c) Case 3:d = diag(q2, q2, q,1). (d) Case 4:d = diag(α, q2, q,1)α 6=
0, q−1, 1, q, q2, q3. (e) Case 5:d = diag(q2, q2, q,1)+e12. (f ) Case 6:d = diag(q2, q,1, 1)+e34.

(a)

Case 1.1

C12 = αe12 + βe24

C21 = 0
C11 = 1 + e34

C22 = q2e11 + qe22 + e33 + e44− e34

< =


∗ ∗ 0 0
0 ∗ 0 ∗
0 0 ε ∗
0 0 0 ε


dim<

6
dim I

2

I =


α 0 0 0
0 α 0 0
0 0 α γ

0 0 0 α

 Aj = Cj = 0

Case 1.2

C12 = 0
C21 = αe21 + βe32

C11 = e11 + q−1e22 + q−2e33 + q−2e44 + e34

C22 = q21− q4e34

< =


∗ 0 0 0
∗ ∗ 0 0
0 ∗ ε ∗
0 0 0 ε


dim<

6
dim I

2

I =


α 0 0 0
0 α 0 0
0 0 α β

0 0 0 α

 Aj = Bj = 0

Case 1.3

C12 = αe12

C21 = βe32

C11 = e11 + e22 + q−1e33 + q−1e44 + e34

C22 = q2e11 + qe22 + qe33 + qe44− q2e34

< =


∗ ∗ 0 0
0 ∗ 0 0
0 ∗ ε ∗
0 0 0 ε


dim<

6
dim I

2

I =


α 0 0 0
0 α 0 0
0 0 α β

0 0 0 α

 Aj = −Cj = −αq−1

Bj = α

(b)

Case 2.1

C12 = qλδe13

C21 = δe43

C11 = e11 + αe22 + e33 + q−1e44

C22 = q2e11 + qα−1e22 + qe33 + qe44

α 6= 1

< =


∗ 0 ∗ 0
0 ∗ 0 0
0 0 ∗ 0
0 0 ∗ ∗


dim<

6
dim I

2

I =


α 0 0 0
0 β 0 0
0 0 α 0
0 0 0 α

 Aj = −Cj = α(q−1−1)
q−1

Bj = α

Case 2.2

C12 = 0;α 6= β 6= γ 6= 1
C21 = 0
C11 = e11 + αe22 + βe33 + γ e44

C22 = q2e11 + qα−1e22 + qβ−1e33 + γ−1e44

< =


∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗


dim<

4
dim I

4

I =


α 0 0 0
0 β 0 0
0 0 γ 0
0 0 0 δ

 Aj = Cj = 0

Case 2.3

C12 = 0;α 6= β
C21 = 0
C11 = e11 + αe22 + βe33 + γ e44

C22 = q2e11 + q
α
e22 + q

β
e33 + γ−1e44

< =


∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗


dim<

4
dim I

4

I =


α 0 0 0
0 β 0 0
0 0 γ 0
0 0 0 δ

 Aj = Cj = 0
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Table 1. (Continued)

Case 2.4

C12 = 0
C21 = 0
C11 = e11 + αe22 + αe33 + βe44 + e23

C22 = q2e11 + q
α
e22 + q

α
e33 + 1

β
e44− q

α2 e23

< =


∗ 0 0 0
0 ε ∗ 0
0 0 ε 0
0 0 0 ∗


dim<

4
dim I

4

I =


α 0 0 0
0 γ δ 0
0 0 γ 0
0 0 0 β

 Aj = Bj = 0

Case 2.5

C12 = qλδe13

C21 = δe43

C11 = e11 + e22 + e33 + q−1e44 + e23

C22 = q2e11 + qe22 + qe33 + qe44− qe23

< =


∗ 0 ∗ 0
0 ε ∗ 0
0 0 ε 0
0 0 ∗ ∗


dim<

6
dim I

2

I =


α 0 0 0
0 α β 0
0 0 α 0
0 0 0 α

 Aj = −Cj = α(q−1−1)
q−1

Bj = α

Case 2.6

C12 = 0
C21 = 0
C11 = e11 + αe22 + αe33 + βe44 + e23

C22 = q2e11 + q
α
e22 + q

α
e33 + 1

β
e44− q

α2 e23

< =


∗ 0 0 0
0 ε ∗ 0
0 0 ε 0
0 0 0 ∗


dim<

4
dim I

3

I =


α 0 0 0
0 β γ 0
0 0 β 0
0 0 0 α

 Aj = Bj = 0

(c)

Case 3.1

C12 = αe13 + γ e34

C21 = 0
C11 = 1 + e12

C22 = q2e11 + q2e22 + e33 + e44

< =


ε ∗ ∗ ∗
0 ε 0 0
0 0 ∗ ∗
0 0 0 ∗


dim<

7
dim I

2

I =


α β 0 0
0 α 0 0
0 0 α 0
0 0 0 α

 Aj = Cj = 0

Case 3.2

C12 = γ e34

C21 = βe32

C11 = qe11 + qe22 + e33 + e44 + e12

C22 = qe11 + qe22 + qe33 + e44− e12

< =


ε ∗ 0 0
0 ε 0 0
0 ∗ ∗ ∗
0 0 0 ∗


dim<

6
dim I

2

I =


α β 0 0
0 α 0 0
0 0 α 0
0 0 0 α

 Aj = −Cj = −q−1α

Bj = α

Case 3.3

C12 = γ e34

C21 = 0
C11 = αe11 + αe22 + e33 + e44 + e12

C22 = q2

α
e11 + q2

α
e22 + qe33 + e44− q2

α2 e12

< =


ε ∗ 0 0
0 ε 0 0
0 0 ∗ ∗
0 0 0 ∗


dim<

5
dim I

3

I =


β γ 0 0
0 β 0 0
0 0 α 0
0 0 0 α

 Aj = Cj = 0

Case 3.4

C12 = βe23

C21 = γ e43

C11 = αe11 + qe22 + qe33 + e44

C22 = q2

α
e11 + qe22 + e33 + e44

α 6= q

< =


∗ 0 0 0
0 ∗ ∗ 0
0 0 ∗ 0
0 0 ∗ ∗
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Table 1. (Continued)

dim<
6

dim I

2

I =


α 0 0 0
0 β 0 0
0 0 β 0
0 0 0 β

 Aj = −Bj = −q−1α

Cj = α

Case 3.5

C12 = 0
C21 = γ e43

C11 = αe11 + αe22 + qe33 + e44 + e12

C22 = q2

α
e11 + q2

α
e22 + e33 + e44− q2

α2 e12

< =


ε ∗ 0 0
0 ε 0 0
0 0 ∗ 0
0 0 ∗ ∗


dim<

5
dim I

3

I =


β ϕ 0 0
0 β 0 0
0 0 α 0
0 0 0 α

 Aj = Bj = 0

Case 3.6

C12 = αe13

C21 = γ e43

C11 = qe11 + αe22 + qe33 + e44

C22 = qe11 + q2

α
e22 + e33 + e44

α 6= q

< =


∗ 0 ∗ 0
0 ∗ 0 0
0 0 ∗ 0
0 0 ∗ ∗


dim<

6
dim I

2

I =


α 0 0 0
0 β 0 0
0 0 α 0
0 0 0 α

 Aj = −Bj = −q−1α

Cj = α

Case 3.7

C12 = αe13

C21 = γ e43

C11 = qe11 + qe22 + qe33 + e44 + e12

C22 = qe11 + qe22 + e33 + e44− e12

< =


ε ∗ ∗ 0
0 ε 0 0
0 0 ∗ ∗
0 0 0 ∗


dim<

6
dim I

2

I =


α β 0 0
0 α 0 0
0 0 α 0
0 0 0 α

 Aj = −Cj = −q−1α

Bj = α

(d)

Case 4.1

C12 = 0
C21 = γ e32 + βe43

C11 = δe11 + q2e22 + qe33 + e44

C22 = α
δ
e11 + e22 + e33 + e44

< =


∗ 0 0 0
0 ∗ 0 0
0 ∗ ∗ 0
0 0 ∗ ∗


dim<

6
dim I

2

I =


β 0 0 0
0 γ 0 0
0 0 γ 0
0 0 0 γ

 Aj = Bj = 0

Case 4.2

C12 = βe23 + γ e34

C21 = 0
C11 = δe11 + e22 + e33 + e44

C22 = α
δ
e11 + q2e22 + qe33 + e44

< =


∗ 0 0 0
0 ∗ ∗ 0
0 0 ∗ ∗
0 0 0 ∗


dim<

6
dim I

2

I =


γ 0 0 0
0 β 0 0
0 0 β 0
0 0 0 β

 Aj = Cj = 0

Case 4.3

C12 = βe34

C21 = γ e32

C11 = δe11 + qe22 + e33 + e44

C22 = α
δ
e11 + qe22 + qe33 + e44

< =


∗ 0 0 0
0 ∗ 0 0
0 ∗ ∗ ∗
0 0 0 ∗


dim<

6
dim I

2

I =


γ 0 0 0
0 β 0 0
0 0 β 0
0 0 0 β

 Aj = −Cj = −q−1β

Bj = β
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Table 1. (Continued)

Case 4.4

C12 = γ e23

C21 = βe43

C11 = δe11 + qe22 + qe33 + e44

C22 = α
δ
e11 + qe22 + e33 + e44

< =


∗ 0 0 0
0 ∗ ∗ 0
0 0 ∗ 0
0 0 ∗ ∗


dim<

6
dim I

2

I =


γ 0 0 0
0 β 0 0
0 0 β 0
0 0 0 β

 Aj = −Bj = −q−1β

Cj = β

(e)

Case 5.1

C12 = 0
C21 = αe43

C11 = q2βe11 + q2βe22 + qγ e33 + γ e44 + βe12

C22 = β−1e11 + β−1e22 + qγ−1e33 + γ−1e44

< =


ε ∗ 0 0
0 ε 0 0
0 0 ∗ 0
0 0 ∗ ∗


dim<

5
dim I

3

I =


β γ 0 0
0 β 0 0
0 0 α 0
0 0 0 α

 Aj = −γBj − γ−1Cj

Case 5.2

C12 = αe13 + βe34

C21 = 0
C11 = q2e11 + q2e22 + q2e33 + q2e44 + e12

C22 = e11 + e22 + q−1e33 + q−2e44

< =


ε ∗ ∗ 0
0 ε 0 0
0 0 ∗ ∗
0 0 0 ∗


dim<

6
dim I

2

I =


α β 0 0
0 α 0 0
0 0 α 0
0 0 0 α

 Aj = Cj = 0

Case 5.3

C12 = αe34

C21 = βe32

C11 = q2e11 + q2e22 + qe33 + qe44 + e12

C22 = e11 + e22 + e33 + q−1e44

< =


ε ∗ 0 0
0 ε 0 0
0 ∗ ∗ 0
0 0 ∗ ∗


dim<

6
dim I

2

I =


α β 0 0
0 α 0 0
0 0 α 0
0 0 0 α

 Aj = −Bj = −q−1β

Cj = β

Case 5.4

C12 = αe34

C21 = 0
C11 = q2βe11 + q2βe22 + γ e33 + γ e44 + βe12

C22 = β−1e11 + β−1e22 + qγ−1e33 + γ−1e44

< =


ε ∗ 0 0
0 ε 0 0
0 0 ∗ ∗
0 0 0 ∗


dim<

5
dim I

3

I =


α γ 0 0
0 α 0 0
0 0 β 0
0 0 0 β

 Aj = Cj = 0

Case 5.5

C12 = αe13

C21 = 0
C11 = q2βe11 + q2βe22 + q2βe33 + δe44 + βe12

C22 = β−1e11 + β−1e22 + q−1β−1e33 + δ−1e44

< =


ε ∗ ∗ 0
0 ε 0 0
0 0 ∗ 0
0 0 0 ∗


dim<

5
dim I

3

I =


α γ 0 0
0 α 0 0
0 0 α 0
0 0 0 β

 Aj = Cj = 0

Case 5.6

C12 = 0
C21 = αe32

C11 = q2βe11 + q2βe22 + qβe33 + δe44 + βe12

C22 = β−1e11 + β−1e22 + β−1e33 + δ−1e44

< =


ε ∗ 0 0
0 ε 0 0
0 ∗ ∗ 0
0 0 0 ∗
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Table 1. (Continued)

dim<
5

dim I

3

I =


α γ 0 0
0 α 0 0
0 0 α 0
0 0 0 β

 Aj = −βBj = −bβ

Case 5.7

C12 = 0
C21 = 0
C11 = q2αe11 + q2αe22 + βe33 + γ e44 + αe12

C22 = α−1e11 + α−1e22 + qβ−1e33 + γ−1e44

< =


ε ∗ 0 0
0 ε 0 0
0 0 ∗ 0
0 0 0 ∗


dim<

4
dim I

4

I =


γ ϕ 0 0
0 γ 0 0
0 0 β 0
0 0 0 α

 Aj = Cj = 0

(f)

Case 6.1

C12 = 0
C21 = αe21

C11 = qβe11 + βe22 + γ e33 + δe44 + δe34

C22 = qβ−1e11 + qβ−1e22 + γ−1e33 + δ−1e44

eitherγ = δ = β or γ = δ = qβ
or γ = δ 6= β or γ = δ 6= qβ

< =


∗ 0 0 0
∗ ∗ 0 0
0 0 ε ∗
0 0 0 ε


dim<

5
dim I

3

I =


α 0 0 0
0 α 0 0
0 0 β γ

0 0 0 β

 Aj = −q−1βBj

Case 6.2

C12 = 0
C21 = αe21

C11 = qβe11 + βe22 + γ e33 + δe44 + δe34

C22 = qβ−1e11 + qβ−1e22 + γ−1e33 + δ−1e44

neitherγ = δ = β norγ = δ = qβ
norγ = δ 6= β norγ = δ 6= qβ

< =


∗ 0 0 0
∗ ∗ 0 0
0 0 ∗ ∗
0 0 0 ∗


dim<

6
dim I

2

I =


β 0 0 0
0 β 0 0
0 0 α 0
0 0 0 α

 Aj = δγ−1−1
γ−δ Cj

Bj = δ−1−γ−1

γ−δ Cj

Case 6.3

C12 = αe24 + βe12

C21 = 0
C11 = 1 + e34

C22 = q2e11 + qe22 + e33 + e44

< =


∗ ∗ 0 0
0 ∗ 0 ∗
0 0 ε ∗
0 0 0 ε


dim<

6
dim I

2

I =


α 0 0 0
0 α 0 0
0 0 α β

0 0 0 α

 Aj = Cj = 0

Case 6.4

C12 = βe12

C21 = 0
C11 = αe11 + αe22 + γ e33 + γ e44 + γ e34

C22 = q2

α
e11 + q

α
e22 + γ−1e33 + γ−1e44

< =


∗ ∗ 0 0
0 ∗ 0 0
0 0 ε ∗
0 0 0 ε


dim<

5
dim I

3

I =


α 0 0 0
0 α 0 0
0 0 β γ

0 0 0 β

 Aj = Cj = 0

Case 6.5

C12 = βe12

C21 = 0
C11 = αe11 + αe22 + γ e33 + δe44 + δe34

C22 = q2

α
e11 + q

α
e22 + γ−1e33 + δ−1e44

γ 6= δ

< =


∗ ∗ 0 0
0 ∗ 0 0
0 0 ∗ ∗
0 0 0 ∗





7028 S Rodŕıguez-Romo

Table 1. (Continued)

dim<
6

dim I

2

I =


α 0 0 0
0 α 0 0
0 0 β 0
0 0 0 β

 Aj = −γ−1Cj = 1

Bj = δ−1−γ−1

γ−δ

Case 6.6

C12 = δe24

C21 = 0
C11 = αe11 + βe22 + γ e33 + βe44 + βe34

C22 = q2

α
e11 + q

β
e22 + γ−1e33 + β−1e44

eitherα = β = γ or γ−1 = q2α−1 = β−1

< =


∗ 0 0 0
0 ∗ 0 ∗
0 0 ε ∗
0 0 0 ε


dim<

5
dim I

2

I =


α 0 0 0
0 β 0 0
0 0 β 0
0 0 0 β

 Bj = −β−1Aj

Cj = 1−q
qβ−1−β−1Aj

Case 6.7

C12 = δe24

C21 = 0
C11 = αe11 + βe22 + γ e33 + βe44 + βe34

C22 = q2

α
e11 + q

β
e22 + γ−1e33 + β−1e44

neitherα = β = γ nor 1/γ = q2/α = 1/β

< =


∗ 0 0 0
0 ∗ 0 ∗
0 0 ∗ ∗
0 0 0 ∗


dim<

6
dim I

2

I =


α 0 0 0
0 β 0 0
0 0 β 0
0 0 0 β

 Aj = −βBj
Bj = β2Bj

Case 6.8

C12 = 0
C21 = βe32

C11 = αe11 + qγ e22 + γ e33 + δe44 + δe34

C22 = q2

α
e11 + γ−1e22 + γ−1e33 + δ−1e44

eitherα = γ = δ or α 6= γ 6= δ

< =


∗ 0 0 0
0 ∗ 0 0
0 ∗ ε ∗
0 0 0 ε



dim<
5

dim I

3

I =


α 0 0 0
0 β 0 0
0 0 β γ

0 0 0 β


Forα 6= γ 6= δ
Aj = 1−γ δ−1

γ−δ Cj = 1

Bj = δ−1−γ−1

γ−δ
Forα = γ = δ
Aj = −γBj

Case 6.9

C12 = 0
C21 = βe32

C11 = αe11 + qγ e22 + γ e33 + δe44 + δe34

C22 = q2

α
e11 + γ−1e22 + γ−1e33 + δ−1e44

neitherα = γ = δ norα 6= γ 6= δ

< =


∗ 0 0 0
0 ∗ 0 0
0 ∗ ∗ ∗
0 0 0 ∗


dim<

6
dim I

2

I =


α 0 0 0
0 β 0 0
0 0 β 0
0 0 0 β

 Aj = Bj = 0

Cj = δ−1−γ−1

γ−δ

Case 6.10

C12 = 0
C21 = 0
C11 = 1 + e34

C22 = q2e11 + qe22 + e33 + e44

< =


∗ 0 0 0
0 ∗ 0 0
0 0 ε ∗
0 0 0 ε


dim<

4
dim I

4

I =


α 0 0 0
0 β 0 0
0 0 γ δ

0 0 0 γ

 Aj , Bj , Cj arbitrary
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Table 1. (Continued)

Case 6.11

C12 = 0
C21 = 0
C11 = αe11 + βe22 + γ e33 + δe44 + δe34

C22 = q2

α
e11 + q

β
e22 + γ−1e33 + ε−1e44

α 6= β 6= γ 6= δ 6= ε

< =


∗ 0 0 0
0 ∗ 0 0
0 0 ∗ ∗
0 0 0 ∗


dim<

5
dim I

3

I =


α 0 0 0
0 β 0 0
0 0 γ 0
0 0 0 γ

 Bj = Cj = ε−1−γ−1

γ−δ
Aj = δ(γ−1−ε−1)

γ−δ

Case 5.5.

Hj = (q2βjm+s↑ + q2βjm+s↓ + q2βjm−s↑ + δjm−s↓ + βjm+(γ1 + iγ2)γ3/2)

⊗(q2βj+1m+s↑ + q2βj+1m+s↓ + q2βj+1m−s↑ + δj+1m−s↓
+βj+1m+(γ1 + iγ2)γ3/2).

Case 6.10.

Hj = Aj(q2m+s↑ + qm+s↓ +m−s↑ +m−s↓ +m−(γ1 + iγ2)γ3/2)

⊗(q2m+s↑ + qm+s↓ +m−s↑ +m−s↓)
−Bj(1 +m−(γ1 + iγ2)γ3/2⊗ (1 +m−(γ1 + iγ2)γ3/2

+Cj(q
2m+s↑ + qm+s↓ +m−s↑ +m−s↓)

⊗(q2m+s↑ + qm+s↓ +m−s↑ +m−s↓).

From these concrete examples it is straightforward to see that the Hamiltonians we have
introduced are somehow related to the Ashkin–Teller model, written in terms of Ising spin;
namely with each sitei we associate two spins (in our case,m± ands↑/↓).

Some additional standard symmetries can also be identified. For example, in case 3.5,
there is an invariance under the transformations↑ → s↓.

Finally, in table 1, we explicitly show all the inner actions ofGL2 onC(1, 3) which can
provide us with nontrivial Hamiltonians for four-state quantum chains with Dipper–Donkin
quantum global symmetry, the operator algebra<, the algebra of invariantsI and the value of
the coefficientsAj , Bj andCj in the unique expression for the corresponding Hamiltonians.
In all reported cases the perturbation is zero.

4. Summary and conclusions

We have been able to show how to construct all possible Hamiltonians for four-state quantum
chains with Dipper–Donkin global symmetry, forqm 6= 1. This has been done, although the
Dipper–Donkin quantum group has a noncentral but group-like determinant. We used the
algebra of invariants for the actions ofGL2 onC(1, 3) which corresponds to the centralizer of
the operator algebra, or image of the representation.

It is straightforward to see that in all possible cases the perturbation of the corresponding
action is zero. Moreover, there are only a few cases where all generators are not null. This
occurs whenever the algebra of invariants is of the formα1 + βeii+1 or αeii + βejj (being
(ii) = (11) and(jj) = (22) = (33) = (44) or (ii) = (22) and(jj) = (11) = (33) = (44)).
We find out that all the Hamiltonians for four-state quantum chains with Dipper–Donkin global
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symmetry have the following unique form:

H =
L−1∑
j=1

id ⊗ . . .⊗ id ⊗ (πj ⊗ πj+1)[Qj(1(Ajd +BjC11 +CjC22))] ⊗ id . . .⊗ id

and we provide the reader with the specific values forAj , Bj andCj in all cases. Some
concrete examples, written in terms ofm± ands↑/↓ are also introduced.

We report elsewhere [15] the complete classification of all inner actions of the Dipper–
Donkin quantum group on theC(1, 3) algebra. In that paper it can be seen how all invariants
of the corresponding case 4 generate trivial Hamiltonians (this is not shown in the present
paper), all invariants of the corresponding case 5 areC ⊗ C (this is case 4 in this paper), and
finally all invariants of the corresponding case 6 (in this paper, case 5) are diagonal plusβe12.
It is also remarkable that all invariant algebras used to construct Hamiltonians with Dipper–
Donkin global symmetry for four-state quantum chains are either diagonal or have elements
in the diagonal plusβeii+1.
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